
Evoluční dilema 
Jedním z problémů, který evoluce před 
organismy postavila, je optimální nastave-
ní metabolismu. Na jedné straně je třeba 
s energií z potravy pracovat nanejvýš hos-
podárně, co největší množství zachytit 
v energeticky bohatých vazbách molekul 
adenosintrifosfátu (ATP) k dalšímu využití 
a omezit unikání energie ve formě tepla. 
Na druhé straně by mírné zahřátí nadbyteč-
ným teplem mohlo zlepšit fungování řady 
buněčných enzymů, iontových pump a pře-
našečů. Úkol jako pro chytrou horákyni. 

Aerobní organismy vyvinuly velice efek-
tivní způsob výroby ATP – oxidační fosfo-
rylaci (obr. 3). Energii vysoce redukovaných 
makromolekul (sacharidů, tuků a bílkovin) 
dokážou maximálně zužitkovat tím, že je 
oxidují až na oxid uhličitý. Jako konečný 
akceptor elektronů, které z těchto makro-
molekul odebírají, totiž využívají kyslík, 
jedno z vůbec nejsilnějších oxidačních čini-
del. Než se elektrony dostanou až ke kyslí-
ku, procházejí sérií komplexů dýchacího 
řetězce ve vnitřní mitochondriální mem-
bráně, kde vyvolávají pumpování vodíko-
vých kationtů (H+) z nitra mitochondrie do 
mezimembránového prostoru (viz obr. 3). 
Tyto kationty jsou pak puzeny elektroche-
mickým gradientem zpět do matrix mito-
chondrie. Vnitřní mitochondriální mem-
brána je pro ně ale neprostupná a jednou 
z mála cest, která se H+ iontům naskýtá, je 
kanálek v komplexu ATP syntázy. Při prů-
chodu ATP syntázou vyvolávají H+ ionty 
v komplexu konformační změny, které 
umožní výrobu ATP. Tok elektronů dýcha-
cím řetězcem je tak prostřednictvím gra -
dientu H+ iontů spřažen s produkcí ATP. 
Jednotlivé biochemické kroky celého pro-
cesu však neprobíhají s absolutní účinností 
a část energie vždy uniká jako teplo. Čím 
rychleji je pak ATP v buňce spotřebovává-

no, tím rychleji může probíhat i oxidace 
živin a tím více tepla se uvolňuje. 

Je tedy lepší šetřit energií a smířit se 
s tím, že tělesná teplota nedosahuje opti-
málních hodnot, takže např. nervová a sva-
lová soustava pracují pomaleji, než by 
mohly? Nebo raději investovat nedostatko-
vou energii do zahřívání těla? Obě cesty 
jsou možné, jak dokumentují živočichové, 
kteří se po nich vydali. Mezi ty, kteří udržují 
obrat metabolismu na minimální úrovni 
a k zahřívání těla využívají přednostně tep-
lo zvnějšku, patří i drobní plazi, kteří v mír-
ném pásu tráví noci v podchlazení a ráno 
se prohřívají na osluněných kamenech. 
V určitých chvílích je ale výhodou mít me -
chanismus, jak se ohřát rychleji vlastními 
silami. Třeba čmeláci v chladných pod-
mínkách upadají do strnulosti, vyžaduje-li 
to ale např. péče o snůšku nebo jiné nalé-
havé důvody, neváhají zvýšit spotřebu ATP 
a tím i tvorbu tepla prostřednictvím stahů 
mohutných létacích svalů. 

Nejdále v investicích do produkce tepla 
zašli ptáci a savci, kteří udržují tělesnou 
teplotu v optimálním úzkém rozmezí takřka 
neustále. Obrat jejich metabolismu je řádo-
vě vyšší než u podobně velkých plazů. Toto 
očividné plýtvání jim však zjevně umož-
ňuje úspěšnější získávání potravy, která 
zvýšené náklady bohatě pokryje. Vysoký 
obrat metabolismu ale není jedinou pod-
mínkou úspěšného udržování stálé tělesné 
teploty. Teplotu je také třeba neustále mo -
nitorovat a její výchylky okamžitě norma-
lizovat jak regulací výroby tepla, tak zba-
vováním se tepla. K tomu lze využít celou 
paletu nástrojů zahrnující změny v izolační 
vrstvě (napřimování chlupů, úpravy pro-
krvení tělního povrchu nebo třeba sezonní 
přepeřování), aktivní zvyšování tepelných 
ztrát (např. odparem potu nebo slin) a cíle-
nou produkci tepla (termogenezi). 

Ideálním termogenním orgánem jsou 
kosterní svaly. Svalový stah a jeho regulace 
jsou totiž energeticky velice náročné, a pro-
to je rychlou aktivací svalu možno několika -
násobně zvýšit metabolický obrat a tím 
i produkci tepla. K zahřátí přitom vede ne -
jen svalová práce při fyzickém pohybu, ale 
i svalový třes (podobně jako u čmeláků). 
Třes lze navíc vhodně kombinovat s mini-
malizací tepelných ztrát změnou tělesného 
postoje (např. stočením se do klubíčka). 

 
Klasická netřesová termogeneze 
Placentální savci vyvinuli ještě jeden ele-
gantní a zcela unikátní způsob, jak se za -
hřát. Místo aby urychlovali spotřebu ATP, 
odpřáhnou jeho produkci od dýchacího 
řetězce. Mitochondrie hnědé tukové tkáně 
savců (blíže v Živě 2020, 4: LXXXIX–XC) 
obsahují speciální odpřahovací protein 1 
(anglicky Uncoupling Protein 1, UCP1), kte-
rý propouští vodíkové kationty přes vnitřní 
mitochondriální membránu nezávisle na 
ATP syntáze. Odpřažení dýchacího řetězce 
od ATP syntázy umožňuje roztočit oxidaci 
živin naplno a uvolnit veškerou energii 
jako teplo. Tuková tkáň obecně skladuje vel-
ké množství energie ve formě zásobních 
lipidů. Hnědá tuková tkáň obsahuje vedle 
toho i velký počet mitochondrií s UCP1, 
a je tedy ideálně vybavena k rychlé mobili-
zaci a spalování energetických zásob. Navíc 
je hnědá tuková tkáň umístěna blízko stře-
du těla (typicky v mezilopatkové oblasti), 
a teplo se tak neztrácí do okolí. Menší depa 
hnědé tukové tkáně leží i podél aorty nebo 
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1 a 2    Infračervené snímky obnažené 
kůže myší po podání kontrolního roztoku 
(obr. 1) a roztoku fibroblastového  
růstového faktoru 21 (FGF21, obr. 2).  
Protože FGF21 silně stimuluje odpřaho-
vací protein 1 (UCP1), má myš po podání 
FGF21 jednak výrazně zvýšenou teplotu 
mezilopatkové oblasti, kde se nachází 
největší depo hnědé tukové tkáně, jednak 
vyšší teplotu ocasu, kterým je odváděno 
přebytečné teplo (viz srovnání vyznače-
ných teplot v obr. 1 a 2). Blíže v textu 
a podrobněji s více obr. na webu Živy. 
Upraveno podle: S. Stanic a kol. (2024)

Petr Zouhar 

Termogeneze:  
obrana před chladem i obezitou? 

Schopnost organismů šetrně nakládat s energií je výsledkem dlouhodobých evo-
lučních tlaků. V současné době relativního dostatku ale může tato vlastnost ústit 
v hromadění přebytečného tuku spojené se zdravotními komplikacemi. Moderní 
věda se proto snaží obezitu léčit mimo jiné zvyšováním energetického výdeje. 
Energeticky velice náročným procesem je i udržování stálé tělesné teploty. 
Modulací fyziologických mechanismů produkce tepla by snad mohlo být možné 
dosáhnout kýžené negativní energetické bilance. I přes dlouhotrvající výzkum 
v této oblasti však stále přibývají nová překvapení. V poslední době se prosazuje 
názor, že vedle svalového třesu a netřesové termogeneze v hnědé tukové tkáni 
využívají savci řadu dalších mechanismů, které by mohly být v terapii obezity 
ještě užitečnější než ty klasické. Na následujících řádcích se budeme věnovat 
současnému stavu poznání problematiky termogeneze a střípkům, kterými 
k němu přispěli vědci z Laboratoře biologie tukové tkáně Fyziologického ústavu 
Akademie věd ČR.
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podklíčkových tepen, které teplo efektivně 
rozvádějí po těle. 

UCP1 je pro H+ ionty prostupný pouze 
v aktivovaném stavu. K aktivaci dochází na 
popud termoregulačních mozkových cen-
ter prostřednictvím sympatického nervstva 
vyplavujícího noradrenalin (obr. 5). Jakmile 
signál pomine, UCP1 se pro H+ ionty opět 
rychle uzavírá. Není-li termogeneze delší 
dobu potřeba, množství UCP1 v hnědé tu -
kové tkáni klesá. Dlouhodobá sympatická 
stimulace během chladové adaptace naopak 
podporuje výrobu nového UCP1, čímž do -
chází k navyšování termogenní kapacity. 
Díky této citlivé regulaci a ideálnímu umís-
tění nepřijde teplo z hnědé tukové tkáně 
nazmar. 

Hnědá tuková tkáň se velice hodí zejmé-
na drobným savcům, kterým oproti těm 
větším hrozí relativně větší tepelné ztrá-
ty. Udržovat se v teple pomocí netřesové 
termogeneze v hnědé tukové tkáni je cesta, 
jak uchovat svaly v pohotovosti pro pří-
padný útěk. U hibernujících savců zase 
UCP1 umožňuje rychlý a účinný návrat do 
provozní teploty. Hnědá tuková tkáň je dů -
ležitá i pro lidské novorozence, kteří ještě 
nemají vyvinutou dostatečnou svalovou 
kapacitu. A menší množství hnědé tukové 
tkáně bylo nalezeno i u dospělých lidí. 

 
Termogenezí proti obezitě 
Zatímco v průběhu většiny evoluční histo-
rie byli naši předkové nuceni šetřit energií 
a ukládat si ji na horší časy mimo jiné v po -
době tukových zásob, moderní doba přines-
la opačné problémy. V časech všeobecné-
ho nadbytku snadno přesáhneme kapacitu 
pro bezpečné skladování tuku a nadbyteč-
ná kila začnou působit plejádu závažných 
zdravotních komplikací. Zdánlivě snadnou 
pomocí je zvýšená fyzická aktivita a pečlivě 
kontrolovaná dieta. Zkušenost ale ukazuje, 
že se tělo opětovnému snižování hmotnosti 
všemožně brání. Ačkoli farmaceutický vý -
voj v poslední době dosáhl nepopiratelných 
pokroků ve vývoji látek, které omezování 
příjmu potravy usnadňují, máme stále co 
zlepšovat. Na úsilí o omezení kalorického 
příjmu reaguje tělo úspornějším energetic-
kým výdejem – snížením bazálního obratu 
metabolismu. Už nějakou dobu proto vzbu-
zuje nemalé naděje teoretická možnost sti-
mulace netřesové termogeneze coby cesta, 
jak se se zpomalením metabolismu vypořá-
dat a hubnutí dále usnadnit. Uvažme, že při 
soustavné dlouhotrvající chladové stimu-
laci se u myší začne UCP1 objevovat také 
v některých klasických tukových depech, 
kde se jinak normálně nevyskytuje. Nebylo 
by tedy možné proměnit i lidskou tukovou 
tkáň ze skladiště na spalovnu lipidů? 

Tyto snahy byly v minulosti podpořeny 
rovněž konceptem navrhujícím, že jednou 
z fyziologických funkcí hnědé tukové tkáně 
je kontrola tělesné hmotnosti. Vedle chla-
dových stimulů mělo k její aktivaci vést 
i hromadění tělesného tuku. Spekulovalo 
se, že jde o adaptaci na příjem potravy obsa-
hující mnoho energie, ale nedostatek někte-
rých esenciálních živin. Takovou potravu 
by bylo nutno přijímat v nadbytku, zatím-
co by spalování přebytečných kalorií umož-
nilo vyhnout se negativním zdravotním 
dopadům. Pokud by UCP1 skutečně hrálo 
uvedenou roli v přírodě, bylo by snazší 
představit si jeho využití v terapii obezity. 

Dnes je však tato teorie spíše zpochyb-
ňována. Hnědá tuková tkáň je ideální pro 
rychlé spouštění a opětovné tlumení termo-
geneze tváří v tvář měnící se vnější teplotě. 
Boj s pozitivní energetickou bilancí naproti 
tomu vyžaduje spíše dlouhodobé působení 
bez nutnosti okamžité regulace. Okamžitá 
aktivace a inaktivace UCP1 se dokonce uká-
zala být překážkou v pokusech snažících se 
léčit obezitu chladovou adaptací. Pokusné 
myši adaptované na chlad začaly po přemís-
tění do normální teploty rychle tloustnout. 
K inaktivaci UCP1 totiž docházelo mnohem 
rychleji, než se zvířatům podařilo upravit 
podle nových podmínek množství přijí-
mané potravy (Von Essen a kol. 2023). 

 
Alternativní mechanismy  
netřesové termogeneze 
V poslední době se často objevují více či 
méně silné doklady dalších mechanismů 
netřesové termogeneze nezávislých na 
UCP1. Podobně jako u svalové práce jde 
většinou o energeticky náročné procesy 
spotřebovávající množství ATP a urychlují-
cí tak oxidaci živin v mitochondriích. Přímo 
v buňkách tukové tkáně byla navržena exis-
tence kreatinového cyklu, při kterém je 
ATP využito k fosforylaci kreatinu, z něhož 
je fosfátová skupina vzápětí opět odštípnu-
ta. Výsledkem tak je pouze uvolněné teplo. 
Zdá se, že je tento proces rovněž stimulován 
sympatickým nervstvem a že může UCP1 
v produkci tepla do jisté míry zastoupit. 

V tukových buňkách dochází také k ná -
kladné syntéze zásobních lipidů triacyl-
glycerolů a v případě potřeby k jejich 
opětovnému odbourávání na mastné ky -
seliny. Oba děje probíhají do jisté míry 
souběžně, což umožňuje citlivější regulaci 
množství vyplavovaných lipidů a zároveň 
uvolňuje určité množství tepla. Odbourává-
ní triacylglycerolů (lipolýza) je opět spouš-
těno výlevem noradrenalinu. Díky tomuto 
energeticky nákladnému cyklu lipogeneze 
a lipolýzy, který významně urychluje mito-
chondriální metabolismus, mohou izolova-
né tukové buňky bez UCP1 vykazovat srov-
natelný metabolický obrat jako ty s UCP1 
(Oeckl a kol. 2022). Stejný mechanismus 
možná také zvedá energetický výdej UCP1-
 -deficientních myší po podávání někte-
rých látek stimulujících termogenezi, jako 
je fibroblastový růstový faktor 21 (Fibro-
blast Growth Factor 21, FGF21), což přispí-
vá k snižování hmotnosti těchto pokusných 
zvířat (Stanic a kol. 2024, viz doplňující 
obr. na webové stránce Živy). 

K produkci tepla může samozřejmě do -
cházet i v jiných tkáních. Zajímavý je v tom-
to ohledu opět zejména kosterní sval, patrně 
evolučně nejstarší termogenní orgán. Do -
sud jsme se zmínili o produkci tepla třesem. 
Klasické dělení termogeneze na třesovou 

a netřesovou ovšem ne vždy zohledňuje 
skutečnost, že svalový stah může spotřebo-
vávat ATP a produkovat teplo, aniž by nut-
ně muselo docházet k jakémukoli pohybu 
či chvění. Stejný účinek má totiž i zvýšení 
svalového napětí (tonu), tedy statické zatí-
nání svalů. Studie spekulující o alternativ-
ních termogenních mechanismech se často 
snaží vyloučit roli svalu na základě pozoro-
vání svalového třesu, chvění. To však zřejmě 
není dostatečné, protože svalový kontraktil-
ní aparát může produkovat teplo klasickým 
mechanismem, aniž by se vůbec pohnul. 
Přesnější, i když technicky dosti náročné je 
proto zaznamenávání elektrických impul-
zů, které stahování svalu vyvolávají. 

 
Vápníkový cyklus ve svalu 
Významná část metabolického obratu sva-
lu připadá na regulační procesy spouštějící 
svalový stah. V klidu se až polovina svalo-
vého ATP spotřebuje na udržování iontové 
rovnováhy. Podobně jako při odpřažení 
mitochondrií hnědé tukové tkáně stojí i na 
počátku svalového stahu nervový signál. 
Tentokrát jde ale o motorický nerv dráž-
dící sval vylitím acetylcholinu. Aktivace 
acetylcholinových receptorů na svalovém 
vlákně spouští sérii změn propustnosti 
svalové membrány pro různé ionty, ústící 
posléze v otevření ryanodinových recepto-
rů (RyR) na membráně sarkoplazmatické-
ho retikula. V cisternách retikula je uloženo 
velké množství vápenatých iontů (Ca2+), 
které přes otevřený RyR vniknou do cyto-
plazmy a vyvolají svalovou kontrakci. Aby 
však sval mohl zdárně pracovat, je posléze 
potřeba stah ukončit tím, že se Ca2+ z cyto-
plazmy vrátí proti koncentračnímu gra -
dientu do sarkoplazmatického retikula. 
K tomu slouží vápníková pumpa SERCA 
(Sarco-Endoplasmic Reticulum Calcium 
ATPase), spotřebovávající pro svou čin-
nost velké množství ATP. 
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U některých ryb jsou dobře popsány ter-
mogenní orgány odvozené od svalů, které 
sice postrádají kontraktilní aparát, zůstává 
však u nich zachováno cyklování Ca2+ mezi 
cytoplazmou a sarkoplazmatickým retiku-
lem. Zatímco v savčím hnědém tuku gene-
ruje dýchací řetězec energii protonového 
gradientu, která je pak při návratu H+ do 
matrix skrze UCP1 přeměněna na teplo, 
v těchto specializovaných rybích orgánech 
vytváří zvýšená aktivita SERCA gradient 
Ca2+, jehož energie je simultánně uvolňová-
na jako teplo při návratu Ca2+ do cytoplaz-
my přes ryanodinové kanály. Tyto orgá-
ny pak lokálně zahřívají některé obzvláště 
důležité části rybího těla, jako např. oči 
nebo centrální nervovou soustavu. 

U savců se o podobné termogenní funkci 
vápníkového cyklu uvažuje u normálních, 
plně funkčních svalů. Měly by k tomu slou-
žit malé peptidy, které se vážou na pumpu 
SERCA a ovlivňují její činnost. Vazba pepti -
du sarkolipinu má bránit čerpání Ca2+, za -
tímco ATP se nadále spotřebovává (Smith 
a kol. 2002). Touto cestou by mělo být mož-
no výrazně navýšit obrat rozkladu (a tím 
i syntézy) ATP, přičemž se veškerá energie 
uvolní jako teplo. Mechanismus byl navr-
žen jako další z alternativ k termogenezi po -
mocí UCP1 a svalového třesu (Pant a kol. 
2016). Není však zcela jisté, zda lze aktivitu 
SERCA od svalového třesu tak jednoznačně 
oddělit. Jde ostatně o součást regulační kas -
kády, která svalový třes normálně spouští. 
Omezení čerpání Ca2+ působením sarkoli-
pinu by mohlo ovlivnit cytoplazmatickou 
koncentraci Ca2+ a tím i parametry svalové 
kontrakce. Peptid fosfolamban, který s pum-
pou SERCA interaguje v srdečním svalu, je 
znám tím, že skrze hladiny Ca2+ moduluje 
odpověď srdce na sympatickou stimulaci. 
Fosfolamban je aktivován rychlou fosfory-
lací a může tak pružně reagovat na nervové 
impulzy. U sarkolipinu však žádná taková 
okamžitá regulace známa není. Aktivitu lze 
navýšit mnohem pomalejším a dlouhodo-
bějším zvýšením jeho množství. Je proto 
možné, že zatímco svalová kontrakce pro-
dukuje teplo v reakci na okamžité potřeby 

organismu, nárůst množství sarkolipinu 
moduluje termogenezi při dlouhodobějším 
chladu. V hnědém tuku zajišťuje adrenergní 
stimulace (působením noradrenalinu) jak 
okamžité spuštění existujícího UCP1, tak 
dlouhodobější navýšení jeho množství. Ve 
svalu by naproti tomu mohla být okamžitá 
a dlouhodobá regulace částečně rozdělena 
mezi kontraktilní aparát a čerpání Ca2+ (viz 
Bardová a kol. 2024 a obr. 5). Nemožnost 
jednoduše a rychle ukončit termogenezi 
zprostředkovanou sarkolipinem by sice zna-
menala komplikaci při rychlém přechodu 
z chladu do tepla, mohla by ale být výhodou, 
pokud bychom se snažili sarkolipin ovlivňo -
vat za účelem snižování hmotnosti. Perifer-
ní umístění většiny svalů oproti hnědé tu -
kové tkáni je patrně navíc spojeno s vyššími 
ztrátami tepla do okolí, a tedy nutností spá-
lit pro stejný termogenní účinek více živin. 

Nakolik jednotlivé termogenní mecha-
nismy přispívají k celkové produkci tepla 
a nakolik souvisejí s náchylností k obezitě, 
je předmětem bouřlivých diskuzí. V naší la -
boratoři jsme se rozhodli přispět k zodpo-
vězení těchto otázek studiem dvou inbred-
ních myších kmenů s různou náchylností 
k obezitě, které pro nás představují model 
situace u různě tloustnoucích lidí (Janovská 
a kol. 2023). Zatímco myši kmene C57BL/6 
při dietě s vysokým obsahem tuku utěšeně 
tloustnou, myši kmene A/J jsou známé svou 
rezistencí k obezitě. Dříve byl tento rozdíl 
přisuzován vyššímu množství UCP1 v ně -
kterých tukových depech A/J myší. Bylo 
to v souladu s výše popsanou hypotézou 
o významu hnědé tukové tkáně pro udržení
tělesné hmotnosti. Ukázalo se ale, že u A/J
myší adaptovaných na chlad reaguje UCP1
na podání noradrenalinu jen velmi slabě.
Účinnější termogenezí v hnědém tuku tedy
překvapivě disponují snadno tloustnoucí
myši C57BL/6. Jak se ale zahřívají myši A/J?
Série nepřímých důkazů naznačuje, že by to
mohlo být právě díky zvýšenému množství
sarkolipinu v některých svalech. A možná,
že tento energeticky náročnější a obtížněji
ovladatelný způsob produkce tepla přispí-
vá ke štíhlému fenotypu myší kmene A/J.

Závěrem 
V porovnání s elegantním mechanismem 
UCP1 se alternativní cesty termogeneze jeví 
poněkud těžkopádné. Mohou sice patrně 
významně přispívat k udržování stálé těles-
né teploty, je-li však k dispozici efektivní 
a snadno ovladatelný UCP1, sáhne orga-
nismus raději po něm. Stejné faktory, které 
znesnadňují využití alternativních mecha-
nismů v okamžité reakci na chlad, by se 
však možná daly využít při prevenci či léč-
bě obezity. Pomalejší regulace by mohla 
snáze vést k energetickému deficitu, pro-
tože by termogenezi nešlo tak jednoduše 
utlumit. Ve výzkumu alternativních ter-
mogenních mechanismů jsme však stále 
spíše na začátku. Věřme, že jim v ne příliš 
vzdálené budoucnosti budeme rozumět 
podobně dobře, jako dnes rozumíme UCP1. 

Podpořeno projektem Národní institut pro 
výzkum metabolických a kardiovasku -
lárních onemocnění (Program EXCELES, 
č. LX22NPO5104) – financováno Evrop-
skou unií – Next Generation EU. 

Použitá literatura uvedena na webu Živy.
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3    Schéma dýchacího řetězce s ATP syn-
tázou a UCP1. Při oxidaci živin jsou elek -
trony (e–) předávány komplexům dýchací-
ho řetězce buď přímo (např. ze sukcinátu 
na komplex II), nebo prostřednictvím 
redukovaného elektronového přenašeče 
NADH. Při průchodu elektronů dýchacím 
řetězcem směrem ke komplexu IV a ke 
konečnému akceptoru (kyslíku) dochází 
k translokaci kationtů vodíku (H+) z mito-
chondriální matrix do mezimembránové-
ho prostoru. Tím vzniká elektrochemický 
gradient, který pak pohání syntézu ATP 
komplexem ATP syntázy. V hnědé tukové 
tkáni mohou H+ ionty pronikat zpět do mi -
tochondriální matrix také prostřednictvím 
aktivovaného UCP1. Tímto způsobem do -
chází v hnědé tukové tkáni k odpřažení 
oxidace živin od produkce ATP, takže akti-
vita ATP syntázy již nelimituje činnost dý -
chacího řetězce a metabolický obrat se tak 
maximalizuje. Upraveno podle: R. Zhou- 
-Zhao a kol. (2019), P. Zouhar (Živa 2020,
4: LXXXIX–XC), orig. R. Bošková
4    Mechanismus třesové a předpokládané
netřesové termogeneze ve svalu. Svalový
stah je způsoben posunováním myozino-
vých a aktinových filament za využití
energie uvolněné rozkladem ATP na ADP.
Část energie uniká jako teplo. Svalový stah
je zahájen obnažením vazebných míst pro
myozin na aktinovém filamentu. Ta jsou
v klidovém stavu kryta proteinovým kom-
plexem, jehož důležitou složkou je tropo-
nin vážící vápník (Ca2+). Stah nastává,
pokud se na troponin váže Ca2+, jehož hla-
dina v cytoplazmě je regulována výlevem
ze sarkoplazmatického retikula skrze rya-
doninový receptor RyR a zpětným odčer-
páváním Ca2+ pumpou SERCA (Sarco-En -
doplasmic Reticulum Calcium ATPase),
která rovněž spotřebovává ATP. Na SERCA
se může vázat malý protein sarkolipin,
blokující čerpání Ca2+, ale nebrzdící
rozklad ATP. Veškerá energie ATP se tak
při vazbě sarkolipinu uvolňuje jako teplo.
Vytvořeno v Biorenderu (https://BioRen-
der.com/n08m588). Orig. J. Kopecký (2025)
5    Termogeneze ve svalu a v hnědém
tuku. V hnědém tuku spouští výlev nor -
adrenalinu signalizační kaskádu vedoucí
k okamžité aktivaci existujícího UCP1.
Při dlouhodobějším působení noradrenali-
nu (typicky při adaptaci na chlad) pomalu
narůstá termogenní kapacita skrze zvýše-
nou produkci UCP1. V kosterním svalu
je okamžitý stah spouštěn výlevem acetyl-
cholinu, který způsobuje uvolnění Ca2+

ze sarkoplazmatického retikula do cyto-
plazmy. Další teplo se uvolňuje při vazbě 
sarkolipinu na Ca2+ pumpu SERCA (viz 
obr. 4). Je možné, že pomalejší regulace 
množství sarkolipinu během chladové 
adaptace navíc moduluje svalovou  
kontraktilitu a celkovou produkci tepla. 
Upraveno podle: K. Bardová a kol. (2024)
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https://BioRender.com/n08m588
https://BioRender.com/n08m588



