Epifyty jsou rostliny, které rostou na povrchu jiných rostlin, ale neparazitují na nich. Nejčastěji je najdeme na větvích stromů. Takové prostředí přináší řadu odlišností oproti růstu v zemi. Na větvích je časově výrazně omezená dostupnost vody i živin, přitom dostatek světla. Epifytické rostliny se proto musejí přizpůsobit jednak příjmu vody i živin, jednak jejich dalšímu uchovávání.

K dalšímu čtení v Živě:

Epifytické organismy – otrlí bojovníci s hlubokým citem pro životní prostředí (2020, 2)

Epibionti aneb Život na životě (2018, 4)

Fyziologické adaptace sukulentních rostlin II. Uhlíkový metabolismus (1999, 3)

Jak rostou orchideje ze semen (2016, 4)

Geografické trendy biologické rozmanitosti: Proč je v tropech a v horách tolik druhů? (2019, 5)

Použitá a doporučená literatura – knihy:

BENZING, David H. Air plants: epiphytes and aerial gardens. Cornell University Press, 2012.
LÜTTGE, Ulrich (ed.). Vascular plants as epiphytes: evolution and ecophysiology. Springer Science & Business Media, 2012.
ZOTZ, Gerhard. Plants on plants: the biology of vascular epiphytes. Berlin: Springer, 2016.

Odborné články:
CRAYN, Darren M., et al. Photosynthetic pathways in Bromeliaceae: phylogenetic and ecological significance of CAM and C3 based on carbon isotope ratios for 1893 species. Botanical Journal of the Linnean Society, 2015, 178.2: 169-221. Dostupné online
DEFOSSEZ Emmanuel, et. al. Plant-ants feed their host plant, but above all a fungal symbiont to recycle nitrogen. Proceedings of the Royal Society B: Biological Sciences, 2010, 278: 1419–1426.
DENG, Hua, et al. Evolutionary history of PEPC genes in green plants: implications for the evolution of CAM in orchids. Molecular phylogenetics and evolution, 2016, 94: 559-564.
CHOMICKI, Guillaume, et al. The velamen protects photosynthetic orchid roots against UV‐B damage, and a large dated phylogeny implies multiple gains and losses of this function during the C enozoic. New Phytologist, 2015, 205.3: 1330-1341.
GEGENBAUER, Christian, et al. Uptake of ant-derived nitrogen in the myrmecophytic orchid Caularthron bilamellatum. Annals of botany, 2012, 110.4: 757-766.
LI, Ming-He, et al. A perspective on crassulacean acid metabolism photosynthesis evolution of orchids on different continents: Dendrobium as a case study. Journal of Experimental Botany, 2019, 70.22: 6611-6619. Dostupné online
PAPINI, Alessio, et al. The ultrastructure of the development of Tillandsia (Bromeliaceae) trichome. Flora-Morphology, Distribution, Functional Ecology of Plants, 2010, 205.2: 94-100. Dostupné online
SILVERA, Katia, et al. Crassulacean acid metabolism and epiphytism linked to adaptive radiations in the Orchidaceae. Plant Physiology, 2009, 149.4: 1838-1847. Dostupné online
ZOTZ, Gerhard; SCHICKENBERG, Nina; ALBACH, Dirk. The velamen radicum is common among terrestrial monocotyledons. Annals of botany, 2017, 120.5: 625-632.
ZOTZ, Gerhard; WINKLER, Uwe. Aerial roots of epiphytic orchids: the velamen radicum and its role in water and nutrient uptake. Oecologia, 2013, 171.3: 733-741.

Epiphytes are plants growing on the sur­face of other plants but not parasitising them. They frequently grow on branches of trees. Such a habitat is markedly different from that of ground-growing plants. There is time-limited water and nutrient availability but enough light. Epiphytes there­fore develop numerous adaptations to in­crease the water and nutrient uptake and to store these resources.