Hypertenze závislá na soli patří mezi nejčastější rizikové faktory kardiovaskulárních onemocnění. U většiny případů je příčina tohoto onemocnění neznámá, avšak významný podíl hypertenzních jedinců citlivých k soli má zvýšené hladiny mineralokortikoidů. V tomto přehledném článku popisujeme hemodynamické abnormality a mechanismy odpovědné za vývin této formy hypertenze.

Použitá a citovaná literatura:
Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, Canessa C, Iwasaki T, Rossier B, Lifton RP. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet. 1995;11:76-82.
Kusche-Vihrog K, Jeggle P, Oberleithner H. The role of ENaC in vascular endothelium. Pflugers Arch. 2014;466:851-859.
Montani JP, Mizelle HL, Adair TH, Guyton AC. Regulation of cardiac output during aldosterone-induced hypertension. J Hypertens Suppl. 1989;7(6):S206-7.
Distler A, Philipp T, Luth B, Wucherer G. Studies on the mechanism of mineralocorticoid-induced blood pressure increase in man. Clin Sci. 1979;57:303s-5s.
Schalekamp MADH, Wenting GJ, Veld.A.J. MIt. Pathogenesis of mineralocorticoid hypertension. Clin Endocrinol Metab. 1981;10:397-417.
Conway J, Hatton R. Development of deoxycorticosterone acetate hypertension in the dog. Circ Res. 1978;43,suppl 1:I-82-I6.
Obst M, Gross V, Luft FC. Systemic hemodynamics in non-anesthetized L-NAME- and DOCA-salt-treated mice. J Hypertens. 2004;22:1889-94.
May CN. Differential regional haemodynamic changes during mineralocorticoid hypertension. J Hypertens. 2006;24:1137-46.
Miller AWH, Bohr DF, Schork AM, Terris JM. Hemodynamic responses to DOCA in young pigs. Hypertension. 1979;1:591-7.
Heer, M, Frings-Meuthen, P, Titze, J, Boschmann, M, Frisch, S, Baecker, N, Beck, L. Increasing sodium intake from a previous low or high intake affects water, electrolyte and acid-base balance differently. Br J Nutr, 101: 1286-1294, 2009.
Heer, M, Baisch, F, Kropp, J, Gerzer, R, Drummer, C: High dietary sodium chloride consumption may not induce body fluid retention in humans. Am J Physiol Renal Physiol, 278: F585-595, 2000.
Damgaard, M, Norsk, P, Gustafsson, F, Kanters, JK, Christensen, NJ, Bie, P, Friberg, L, Gadsboll, N: Hemodynamic and neuroendocrine responses to changes in sodium intake in compensated heart failure. Am J Physiol Regul Integr Comp Physiol, 290: R1294-1301, 2006.
Damgaard, M, Gabrielsen, A, Heer, M, Warberg, J, Bie, P, Christensen, NJ, Norsk, P: Effects of sodium intake on cardiovascular variables in humans during posture changes and ambulatory conditions. Am J Physiol Regul Integr Comp Physiol, 283: R1404-1411, 2002.
Greene, AS, Yu, ZY, Roman, RJ, Cowley, AW, Jr.: Role of blood volume expansion in Dahl rat model of hypertension. Am J Physiol, 258: H508-H514, 1990.
Brown, WJJ, Brown, FK, Krishan, E: Exchangeable sodium and blood volume in normotensive and hypertensive humans on high and low sodium intake. Circulation, 43: 508-519, 1971.
Rocchini, AP, Cant, JR, Barger, AC: Carotid sinus reflex in dogs with low- to high-sodium intake. Am J Physiol, 233: H196-202, 1977.
West, SG, Light, KC, Hinderliter, AL, Stanwyck, CL, Bragdon, EE, Brownley, KA: Potassium supplementation induces beneficial cardiovascular changes during rest and stress in salt sensitive individuals. Health Psychol, 18: 229-240, 1999.
Sullivan, JM, Prewitt, RL, Ratts, TE, Josephs, JA, Connor, MJ: Hemodynamic characteristics of sodium-sensitive human subjects. Hypertension, 9: 398-406, 1987.



Salt-dependent hypertension is a leading cause of cardiovascular diseases. In most cases, the etiology is unknown, but it has been estimated that a significant percentage of salt-sensitive hypertensive individuals have mineralocorticoid excess. In this review, we describe hemodynamic ab­normalities and mechanisms responsible for initiation of this form of hypertension.