Arbuskulární mykorrhiza je široce rozšířenou symbiózou mikroskopických hub s kořeny rostlin. Soužití spočívá v oboustranné výměně látek: Houby přináší rostlinám minerální živiny získané z půdy (především fosfor) a na oplátku dostávají organické látky. Je tato symbióza pro partnery výhodná? A jsou houby a rostliny vůči partnerům vybíraví? Článek je zaměřen ekofyziologické aspekty arbuskulární mykorrhizy.

Citovaná a další doporučená literatura
CASIERI, Leonardo, et al. Biotrophic transportome in mutualistic plant–fungal interactions. Mycorrhiza, 2013, 23.8: 597-625.
FACELLI, Evelina, et al. Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition. New Phytologist, 2010, 185.4: 1050-1061.
FELLBAUM, Carl R., et al. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytologist, 2014, 203.2: 646-656.
GARCIA, Kevin, et al. Take a trip through the plant and fungal transportome of mycorrhiza. Trends in plant science, 2016, 21.11: 937-950.
GRACE, E. J., et al. Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes. New Phytologist, 2009, 181.4: 938-949.
GRMAN, Emily. Plant species differ in their ability to reduce allocation to non‐beneficial arbuscular mycorrhizal fungi. Ecology, 2012, 93.4: 711-718.
GRYNDLER, Milan, et al. Mykorhizní symbióza: o soužití hub s kořeny rostlin. Academia, 2004.
HAMMER, Edith C., et al. Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiology Ecology, 2011, 76.2: 236-244.
JAKOBSEN, I.; ROSENDAHL, L. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytologist, 1990, 115.1: 77-83.
JOHNSON, David; LEAKE, J. R.; READ, D. J. Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of 14C. Soil Biology and Biochemistry, 2002, 34.10: 1521-1524.
JOHNSON, Nancy Collins. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist, 2010, 185.3: 631-647.
JOHNSON, Nancy Collins, et al. Mycorrhizal Mediation of Soil. Elsevier, 2016.
JOHNSON, Nancy Collins; GRAHAM, J. H.; SMITH, F. A. Functioning of mycorrhizal associations along the mutualism–parasitism continuum. The New Phytologist, 1997, 135.4: 575-585.
JOHNSON, Nancy Collins, et al. Mycorrhizal phenotypes and the Law of the Minimum. New Phytologist, 2015, 205.4: 1473-1484.
JOHNSON, David, et al. In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytologist, 2002, 2: 327-334.
KASCHUK, Glaciela, et al. Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses?. Soil Biology and Biochemistry, 2009, 41.6: 1233-1244.
KIERS, E. Toby, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. science, 2011, 333.6044: 880-882.
KIERS, E. Toby; VAN DER HEIJDEN, Marcel GA. Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary cooperation. Ecology, 2006, 87.7: 1627-1636.
KOCH, Karen E.; JOHNSON, Charles R. Photosynthate partitioning in split-root citrus seedlings with mycorrhizal and nonmycorrhizal root systems. Plant Physiology, 1984, 75.1: 26-30.
KOLTAI, Hinanit; KAPULNIK, Yoram (ed.). Arbuscular mycorrhizas: physiology and function. Springer Science & Business Media, 2010.
KONVALINKOVÁ, Tereza; JANSA, Jan. Lights off for arbuscular mycorrhiza: on its symbiotic functioning under light deprivation. Frontiers in plant science, 2016, 7: 782.
KONVALINKOVÁ, Tereza, et al. Duration and intensity of shade differentially affects mycorrhizal growth-and phosphorus uptake responses of Medicago truncatula. Frontiers in plant science, 2015, 6: 65.
KONVALINKOVÁ, Tereza, et al. Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization. Plant and Soil, in press, doi:10.1007/s11104-017-3350-6.
KUCEY, R. M. N.; PAUL, E. A. Carbon flow, photosynthesis, and N2 fixation in mycorrhizal and nodulated faba beans (Vicia faba L.). Soil biology and biochemistry, 1982, 14.4: 407-412.
LEKBERG, Ylva; HAMMER, Edith Caroline; OLSSON, Pål Axel. Plants as resource islands and storage units–adopting the mycocentric view of arbuscular mycorrhizal networks. FEMS Microbiology Ecology, 2010, 74.2: 336-345.
MOSSE, Barbara. Fructifications of an Endogone species causing endotrophic mycorrhiza in fruit plants. Annals of Botany, 1956, 20.2: 349-362.
MOSSE, Barbara. Growth and chemical composition of mycorrhizal and non-mycorrhizal apples. Nature, 1957, 179.4566: 922-924.
PEARSON, J. N.; JAKOBSEN, I. The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labelling with 32P and 33P. New Phytologist, 1993, 124.3: 489-494.
ŘEZÁČOVÁ, Veronika; KONVALINKOVÁ, Tereza; JANSA, Jan. Carbon fluxes in mycorrhizal plants. In: Mycorrhiza-Eco-Physiology, Secondary Metabolites, Nanomaterials. Springer, Cham, 2017. p. 1-21.
SLAVÍKOVÁ, Renata, et al. Monitoring CO2 emissions to gain a dynamic view of carbon allocation to arbuscular mycorrhizal fungi. Mycorrhiza, 2017, 27.1: 35-51.
SMITH, Sally E.; READ, David J. Mycorrhizal symbiosis. Academic press, 2008.
SMITH, Sally E.; SMITH, F. Andrew; JAKOBSEN, Iver. Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist, 2004, 162.2: 511-524.
SNELLGROVE, R. C., et al. The distribution of carbon and the demand of the fungal symbiont in leek plants with vesicular‐arbuscular mycorrhizas. New Phytologist, 1982, 92.1: 75-87.
FRANK, B. On the nutritional dependence of certain trees on root symbiosis with belowground fungi (an English translation of AB Frank’s classic paper of 1885). Mycorrhiza, 2005, 15.4: 267-275.
VAN DER HEIJDEN, Marcel GA; HORTON, Thomas R. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology, 2009, 97.6: 1139-1150.
VOHNÍK, Martin. Wood Wibe Web – rostliny na síti. Živa, 2008, 5: 199-201.
VOSÁTKA, Miroslav. Houbový internet v půdě. Živa, 2002, 5: 203-205.
WALDER, Florian, et al. Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant physiology, 2012, 159.2: 789-797.
WALDER, Florian; VAN DER HEIJDEN, Marcel GA. Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nature plants, 2015, 1: 15159.
WATTS-WILLIAMS, Stephanie J., et al. Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula. Journal of experimental botany, 2015, 66.13: 4061-4073.
WEREMIJEWICZ, Joanna; JANOS, David P. Common mycorrhizal networks amplify size inequality in Andropogon gerardii monocultures. New Phytologist, 2013, 198.1: 203-213.
WERNER, Gijsbert DA; KIERS, E. Toby. Partner selection in the mycorrhizal mutualism. New Phytologist, 2015, 205.4: 1437-1442.

Arbuscular mycorrhiza is a widespread symbiosis between microscopic fungi and plant roots. It consists in a bidirectional exchange of matter – fungi supply plants with mineral nutrients (mainly phosphorus) gained from soil, and receive organic compounds in return. Is the symbiosis be­neficial for both partners? Are the plants and fungi selective about their partners? This paper focuses on the ecophysiological aspects of arbuscular mycorrhiza.