Dnešní terestrické ekosystémy jsou do značné míry produktem koevoluce rostlin a hmyzu, který představuje vůbec nejpočetnější a nejrozmanitější skupinu živočichů. Počátky tohoto vzájemného působení lze vysledovat stovky milionů let do minulosti, přičemž postupně docházelo k nárůstu jeho komplexity. Nejčastějšími doklady těchto složitých vztahů jsou fosilizované listy nebo jejich otisky, vykazující často specifické i nespecifické poškození, jako jsou miny nebo hálky, stopy po ovipozici, popřípadě nejrůznější typy okusů. Kvalitativní a kvantitativní analýza těchto stop má velký význam při studiu evolučních procesů v rámci výše uvedených skupin organismů. Detekované změny v dynamice trofických vztahů mezi hmyzem a jeho rostlinnými hostiteli pomáhají zpřesnit představu o vlivu měnícího se prostředí na okolní biotu, jakož i poskytují vodítko pro stanovování průběhu klimatických změn v čase.

Použitá a citovaná literatura:
ALVIN, K. L., a kol. The fossil record. London, Geology Society of London. s. 247–268.
ASH, SIDNEY. Evidence of arthropod-plant interactions in the Upper Triassic of the southwestern United States. Lethaia [online]. 1996, vol. 29, issue 3, s. 237-248 [cit. 2015-03-20]. DOI: 10.1111/j.1502-3931.1996.tb01657.x.
ARTABE, Analia E. a Dennis Wm. STEVENSON. Fossil Cycadales of Argentina. The Botanical Review [online]. 1999, vol. 65, issue 3, s. 219-238 [cit. 2015-03-20]. DOI: 10.1007/bf02857630.
BEHRENSMEYER, A. K., HOOK, R. W. Paleoenvironmental context and taphonomicmodels. In: Behrensmeyer A. K., Damuth J. D., Di Michele W. A., Potts R., Sues H.-D., Wing S. L. (eds.). Terrestrial Ecosystems Through Time. Chicago, University Chicago Press. 1992. s. 15–136.
BERRY, E. W. Pathological conditions among fossil plants. In: Moodie, R. L. Paleopathology: An introduction to the study of ancient evidences of disease. Urbana, Illinois, University of Illinois Press, 1923. s. 99–109
BERRY, E. W. A Lower Lance florule from Harding County, South Dakota. United States Geological Survey Professional Paper.1934, vol. 185F, s. 127–133.
BÉTHOUX, O., GALTIER, J., NEL, A. Earliest evidence of insect endophytic ovoposition. Palaios. 2004, vol. 19, s. 408–413.
BRAUCKMANN, Carsten a Wolfgang ZESSIN. Neue Meganeuridae aus dem Namurium von Hagen-Vorhalle (BRD) und die Phylogenie der Meganisoptera (Insecta, Odonata). Deutsche Entomologische Zeitschrift (neue Folge) [online]. 1989, vol. 36, 1-3, s. 177-215 [cit. 2015-03-20]. DOI: 10.1002/mmnd.4810360127.
COCKERELL T. D. A. Fossil insect from Florrisant, Colorado. Bulletin of the American Museum of Natural History. 1908, vol. 24, 59–69.
COLLINSON, M. E., J. J. HOOKER, P. W. SKELTON, P. D. MOORE, J. OLLERTON a R. McN. ALEXANDER. Fossil Evidence of Interactions between Plants and Plant-Eating Mammals [and Discussion]. Philosophical Transactions of the Royal Society B: Biological Sciences [online]. 1991, vol. 333, issue 1267, s. 197-208 [cit. 2015-03-20]. DOI: 10.1098/rstb.1991.0068.
CUEVAS-REYES, P., M. QUESADA, P. HANSON, R. DIRZO, K. OYAMA, P. CUEVAS-REYES, N. A. ESPINOSA-OLVERA, M.-L.YURIXHI a K. OYAMA. Diversity of gall-inducing insects in a Mexican tropical dry forest: the importance of plant species richness, life-forms, host plant age and plant density. Journal of Ecology [online]. 2004, vol. 92, issue 4, s. 707–716 [cit. 2015-03-20]. DOI: 10.1007/978-94-017-8783-3_24.
CUEVAS-REYES, P., M. QUESADA, K. OYAMA. () Abundance and Leaf Damage Caused by Gall-Inducing Insects in a Mexican Tropical Dry Forest. Biotropica. 2006, vol. 38, s. 107–115
ERWIN, D. M., SCHICK, K. N. (New miocene oak galls (Cynipini) and their bearing on the History of cynipid wasp in western North America. Journal of Paleontology. 2007, vol. 81, s. 568–580
FARRELL, B. D., MITTER, C. Adaptive Radiation in Insect and Plants: Time and Opportunity. American Zoologist. 1994, vol. 34, s. 57–69
GENISE, J. F. Upper Cretaceous trace fossils in permineralized plant remains from Patagonia, Argentina. Ichnos. 1995, vol. 3, s. 287–299
GORELICK, R. Did insect pollination increased seed plant diversity? Biological Journal of Linnean Society. 2001, vol. 74, s. 407–427
GRAUVOGEL-STAMM, L., KELBER, K.-P. Plant-insect interactions and coevolution during the Triassic in western Europe. Paleontologica Lombarda (N.S.). 1996, vol. 5, s. 5–23
GRIMALDI, D. A. The co-radiation of pollinating insects and angiosperms in the Cretaceous. Annals of the Missouri Botanical Garden. 1999, vol. 86, s. 373–406
HADDAD, N. M, TILMAN, D., HAARSTAD, J., RITCHIE, M., KNOPS, J. M. H. Contrasting effects of plant richness and composition on insect communities: a field experiment. American Naturalist. 2001, vol. 158, s. 17–35
HEIE, O. E. (1968) Pliocene aphids from Willerhausen (Homoptera, Aphidoidea). Beiheft der Berichte der Naturhistorischen Gesellschaft zu Hannover. 6: 25–39
HICKEY, L. J., HODGES, R. W. Lepidopteran leaf mine from the Early Eocene Wind River Formation of northeastern Wyoming. Science. 1975, vol. 189, s. 718–720
HÖLLDOBLER, B., WILSON, E. O. The ants. Cambridge, Oxford University Press, 1990. 732 s.
CHANEY, R. W., MASON, H. L. A. Pleistocene flora from Santa Cruz Island, California. Carnegie Institut of Washington Publications, Contributions to Paleontology I. 1930, vol. 415, s. 1–24
IANNUZZI, R., LABANDEIRA, C. C. The Oldest Record of External Foliage Feeding and the Expansion of Insect Folivory on Land. Annals of the Entomological Society of America. 2008, vol. 101, s. 79–94
KNOR, S., PROKOP, J., KVAČEK, Z., JANOVSKÝ, Z., WAPPLER, T. Plant–arthropod associations from the Early Miocene of the Most Basin in North Bohemia – Palaeoecological and palaeoclimatological implications. Palaeogeography, Palaeoclimatology, Palaeoecology. 2012, vol. 321–322, s. 102–112
KNOR, S., SKUHRAVÁ, M., WAPPLER, T., PROKOP, J. Galls and gall makers on plant leaves from the lower Miocene (Burdigalian) of the Czech Republic: Systematic and palaeoecological implications. Review of Palaeobotany and Palynology. 2013, vol. 188, s. 38–51
KVAČEK, Z., BÖHME, M., DVOŘÁK, Z., KONZALOVÁ, M., MACH, K., PROKOP, J., RAJCHL, M. Early Miocene freshwater and swamp ecosystems of the Most Basin (northern Bohemia) with particular reference to the Bílina mine section. Journal of the Czech Geological Society. 2004, vol. 49, s. 1–40
KVAČEK, Z., DVOŘÁK, Z., MACH, K., SAKALA, J. Třetihorní rostliny severočeské hnědouhelné pánve. Granit, Praha, 2004.
KONIJNENBURG-VAN CITTERT, J. H. A., VAN SCHMEISSNER, S. Fossil insect eggs on Lower Jurassic plant remains from Bavaria (Germany). Palaeogeography, Palaeoclimatology, Palaeoecology. 1999, vol. 152, s. 215–223.
LABANDEIRA, C. C. The history of associations between plants and animals. In: Herrera C. M., Pellmyr O. (eds.). Plant-Animal Interactions: An Evolutionary Approach. London, Blackwell, 2002, s. 26–74, 248–261
LABANDEIRA, C. C. The four Phases of Plant-Arthropod Associations in Deep Time. Geologica Acta. 2006, vol. 4, s. 409–438
LABANDEIRA, C. C., KVAČEK, J., MOSTOVSKI, M. B. Pollination drops, pollen, and insect pollination of Mesozoic gymnosperms. Taxon. 2007, vol. 56, s. 663–695
LABANDEIRA, C. C., PHILLIPS, T. L. A late Carboniferous petiole gall and the origin of holometabolous insects. Proceedings of the National Academy of Sciences U.S.A. 1996, vol. 93, s. 8470–8474
LAREW, H. G. Fossil galls. In: Shorthouse, J.D., Rohfritsch, O. (eds.). Biology of insect-induced galls. Oxford, Oxford University Press, 1992, s. 51–59
MIKULÁŠ, R., DVOŘÁK, Z., PEK, I. Lamniporichnus vulgaris gen. et spec. nov.,traces of insect larvae in stone fruit of hackberry (Celtis) from the Miocene and Pleistocene of the Czech Republic. Journal of the Czech Geologic Society. 1998, vol.43, s 277–280
MICHENER, C. D., GRIMALDI, D. A. The oldest fossil bee: apoid history, evolutionary stasis, and antiquity of social behavior. Proceedings of the National Academy of Sciences of the United States of America. 1988, vol. 85, s. 6424–6426
MÖHN, E. Eine neue Gallmücke aus der niederrheinischen Braunkohle. Secken bergiana Lethaea 1960, vol. 41, s. 513–522
NISHIDA, H., HAYASHI, N. Cretaceous coleopteran larva fed on a female fructification of extinct gymnosperm. Journal of Plant Research. 1996, vol. 109, s. 327–330
NORSTOG, K. J., NICHOLLS, T. J. The Biology of the Cycads. Ithaca, New York, Cornell University Press, 1997. s. 504
OPLER P. A. Fossil leaf-mines of Bucculatrix (Lyonetiidae) on Zelkova (Ulmaceae) from Florissant, Colorado. Journal of the Lepidopterists`Society. 1982, vol. 36, s. 145–147
POTT, CH., LABANDEIRA, C. C., KRINGS, M., KERP, H. Fossil insect eggs and ovopositional damage on bennettitalean leaf cuticles from the carnian (Upper Triassic) of Austria. Journal of Paleontology. 2008, vol. 82, s. 778–789
RASNITSYN, A. P., NOVOKSHONOV, V. G. On the morphology of Uralia maculata, (Insecta, Diaphanopterpidea) from the Early Permian (Kungurian) of Ural (Russia). Entomologica Scandinavica. 1997, vol. 28, s. 27–38
REN, D. Flower-associated Brachycera flies as a fossil evidence for Jurassic angiosperm origins. Science. 1998, vol. 280, s. 85–88
ROHDENDORF, B. B., RASNITSYN, A. P. Historical development of the class Insecta. Transactions of the Paleontological Institute. 1980, vol. 85, s. 1–270
ROZEFELDS, A. C. Lepidoptera mines in Pachypteris leaves (Corystospermaceae, Pterydospermophyta) from the Upper Jurassic/Lower Cretaceous Battle Camp formation, North Queensland. Proceedings of the Royal Society of Queensland. 1988, vol. 99, s. 533–541
SCOTT, A. C., TAYLOR, T. N. Plant-animal interactions during the Upper Carboniferous. Botanical Review. 1983, vol. 49, s. 259–307
SCOTT, A. C., STEPHENSON, J., CHALONER, W. G. Interactions and coevolution of plant and arthropods during the Paleozoic and Mesozoic. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 1992, vol. 335, s. 129–165
SCOTT, A. C., STEPHENSON, J., COLLINSON, M. E. The fossil record of plant galls. In: Wiliams M. A. J. (ed.). Plant Galls: Organisms, Interactions, Populations. Systematic Association Special Publication. 1994, vol. 49, s. 447–470
SHAROV, A. G. Morphological features and mode of life of the Paleodictyoptera. In: Bei-Benko, G. Y. (ed.). Readings in the Memory of Nikolaj Aleksadrovitch Kholodkovskij. Leningrad, Science Publishers, 1973, s. 49–63
SHEAR, W. A., KUKALOVÁ-PECK, J. The ecology of Paleozoic terrestrial arthropods: the fossil evidence. Canadian Journal of Zoology. 1990, vol. 68, s. 1807–1834
STEINBACH, G. Zur Hymenopterenfauna des Pleiozäns von Willerhausen/Westharz. Berichte der Naturhistorischen Gesselschaft zu Hannover. 1967, vol. 111, s. 95–102
SUN, G., DILCHER, D. L., ZHENG, S., ZHOU, Z. In: Search of the First Flower: A Jurassic Angiosperm, Archaefructus, from Northeast China. Science. 1998, vol. 282, s. 1692–1695
TIFFNEY, B. H. Fruits and seeds of the Brandon Lignite. V. Rutaceae. Journal of the Arnold Arboretum. 1980, vol. 61, s. 1–36
WAGGONER, B. M., POTEET, M. F. Unusual oak leaf galls from the middle miocene of northwestern Nevada. Journal of Paleontology. 1996, vol. 70, s. 1080–1084
WEDMANN, S., WAPPLER, T., ENGEL, M. S. Direct and indirect fossil records of megachilid bees from the Paleogene of Central Europe (Hymenoptera: Megachilidae). Naturwissenschaften. 2009, vol. 96, s. 703–712
WILF, P. Insect-damaged fossil leaves record food web response to ancient climate change and extinction. New Phytologist. 2008, vol. 178, s. 486–502
WILSON, E. O. The earliest known ants: an analysis of the Cretaceous species and aninference concerning their social organization. Paleobiolog.1987, vol. 13, s. 44–53

Contemporary terrestrial ecosystems are largely a product of the coevolution of plants and insects, which are the most prevalent and diverse group of animals. The origin of these interactions can be traced hundreds of millions of years back followed by a gradual increase in their complexity. The most common evidence of these complex relationships is represented by the fossilized leaves, often having specific and non-specific damage such as the mines, galls, traces of oviposition, or various types of feeding. Qualitative and quantitative analyses of these ichnofossils are of great importance with regard to the study of the evolutionary processes occurring among these groups of organisms. The detected changes in the dynamics of trophic relationships between insects and their host plants help to clarify ideas regarding the impact on the developing environment and organisms, and provide evidence for the recognition of trends in climate changes in the past.